IN THE NAME OF GOD

Dept. of Civil Engineering University of Tehran

"Meshless Methods (EFM)"

A 3-Unite PhD Course in Computational Mechanics

http://sfsepehr.i8.com/Sohail/courses.htm#_meshless

lectured by:

S. Mohammadi S. Forouzan-sepehr

Evaluation:

- ♦ Homework ~30%
- ❖ Final Exam, Part I: Questions (Closed Book) ~10%
- ❖ Final Exam, Part II: Problems (Take Home) ~ 60%

Contents in Brief:

- Introduction
- Preparation to Solve Engineering Problems by the Use of Meshless Methods
- Integration Methods
- Development of Meshless Methods
- Element-Free Galerkin Method
- Meshless Local Petrov-Galerkin Method
- Reproducing Kernel Particle Method
- * hp-Cloud Meshless Method
- Advanced Topics

Further details about the course are available at: http://sfsepehr.i8.com/Sohail/courses.htm#_meshless

IN THE NAME OF GOD

Dept. of Civil Engineering University of Tehran

"Meshless Methods (EFM)"

S. Mohammadi, S. Forouzan-sepehr A 3-Unite PhD Course in Computational Mechanics

http://sfsepehr.i8.com/Sohail/courses.htm# meshless

Contents:

1. Introduction

Outline of the course, a review on general partial differential equations for engineering problems, an overview to computational methods for solving boundary value engineering problems, the idea of meshless methods.

2. Preparation to Solve Engineering Problems by the Use of Meshless Methods

Modelling of the geometry, node generation, definition of influence domain, a review on principles for weak forms, definition of weight function, meshless methods general procedure, comparison between EFM and FEM.

3. <u>Integration Methods</u>

Background cells and Gauss points, nodal integration.

4. <u>Development of Meshless Methods</u>

Point interpolation & approximation methods, "Smoothes Particle Hydrodynamic Approach (SPH)", "Finite Point Method (FPM)", "Finite Volume Method (FVM)", "Moving Least Squares Approximation (MLS)", "Partition of Unity Approach (PUM)", "Reproducing Kernel Particle Method (RKPM)".

5. <u>Element-Free Galerkin Method (EFGM)</u>

EFG shape function construction, application of EFGM in heat transfer problems, application of EFGM in solid mechanics, nonlinear problems.

6. Meshless Local Petrov-Galerkin Method (MLPG)

MLPG formulation, application of MLPG in dynamic problems.

7. Reproducing Kernel Particle Method (RKPM)

RKPM formulation, application of RKPM in computational contact mechanics.

8. hp-Cloud Meshless Method

An overview to adaptive analysis, hp-Cloud formulation, application of hp-Cloud in computational fracture mechanics.

9. Advanced Topics

Error estimation in meshless methods, node refinement and renoding, adaptive procedures for meshless methods, coupled methods (EF-FE, EF-BE and EF-BE-FE).

Evaluation:

- 1. Homework ~30%
- 2. Final Exam, Part I: Questions (Closed Book) ~10%
- 3. Final Exam, Part II: Problems (Take Home) ~ 60%

Proposed by:

S. Forouzan-sepehr, PhD student in Structural Engineering, Department of Civil Engineering, University of Tehran.

Email: sforozan@chamran.ut.ac.ir Website: http://sfsepehr.i8.com

